首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3029篇
  免费   997篇
  国内免费   413篇
化学   2210篇
晶体学   244篇
力学   80篇
综合类   40篇
数学   7篇
物理学   1858篇
  2024年   2篇
  2023年   27篇
  2022年   74篇
  2021年   102篇
  2020年   119篇
  2019年   105篇
  2018年   77篇
  2017年   138篇
  2016年   206篇
  2015年   189篇
  2014年   229篇
  2013年   383篇
  2012年   268篇
  2011年   266篇
  2010年   206篇
  2009年   186篇
  2008年   183篇
  2007年   215篇
  2006年   197篇
  2005年   177篇
  2004年   162篇
  2003年   158篇
  2002年   156篇
  2001年   53篇
  2000年   62篇
  1999年   62篇
  1998年   84篇
  1997年   83篇
  1996年   57篇
  1995年   62篇
  1994年   35篇
  1993年   27篇
  1992年   13篇
  1991年   11篇
  1990年   13篇
  1989年   5篇
  1988年   9篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   8篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1975年   1篇
  1974年   2篇
排序方式: 共有4439条查询结果,搜索用时 31 毫秒
31.
Silanethione compounds, R2Si=S, have been recognized as highly reactive species. One reliable way to stabilize silanethione is its coordination to transition metal fragments to convert silanethione-coordinated transition metal complexes. Herein, we report the synthesis, structure, and reactivity of a second cationic silanethione tungsten complex [Cp*(OC)3W{S=SiR2(py)}]TFPB (R=Me ( 5 a ), Ph ( 5 b ), Cp*: η5-C5Me5, py: pyridine, and TFPB: [B{3,5-(CF3)2C6H3}4]). Complex 5 was obtained by H abstraction from the Si atom in the corresponding silylsulfanyl complex Cp*(OC)3W(SSiR2H) ( 4 ) with Ph3CTFPB, followed by the addition of pyridine. The reaction of 5 with PhNCS and PMe3 produced [Cp*(OC)3W{SSiR2N(Ph)C(PMe3)2}]TFPB (R=Me ( 6 a ), Ph ( 6 b )) via the elimination of pyridine and the addition of the 1,3-dipolar species PhNC(PMe3)2 ( A ) to the Si atom.  相似文献   
32.
An enantio‐ and regioselective allylic silylation of linear allylic phosphates that makes use of catalytically generated cuprate‐type silicon nucleophiles is reported. The method relies on soft bis(triorganosilyl) zincs as silicon pronucleophiles that are prepared in situ from the corresponding hard lithium reagents by transmetalation with ZnCl2. With a preformed chiral N‐heterocyclic carbene–copper(I) complex as catalyst, exceedingly high enantiomeric excesses are achieved. The new method is superior to existing ones using a silicon–boron reagent as the source of the silicon nucleophile.  相似文献   
33.
Amorphous silicon is synthesized by treating the tetrahalosilanes SiX4 (X=Cl, F) with molten sodium in high boiling polar and non‐polar solvents such as diglyme or nonane to give a brown or a black solid showing different reactivities towards suitable reagents. With regards to their technical relevance, their stability towards oxygen, air, moisture, chlorine‐containing reaction partners RCl (R=H, Cl, Me) and alcohols is investigated. In particular, reactions with methanol are a versatile tool to deliver important products. Besides tetramethoxysilane formation, methanolysis of silicon releases hydrogen gas under ambient conditions and is thus suitable for a decentralized hydrogen production; competitive insertion into the MeO?H versus the Me?OH bond either yields H‐ and/or methyl‐substituted methoxy functional silanes. Moreover, compounds, such as MenSi(OMe)4?n (n=0–3) are simply accessible in more than 75 % yield from thermolysis of, for example, tetramethoxysilane over molten sodium. Based on our systematic investigations we identified reaction conditions to produce the methoxysilanes MenSi(OMe)4?n in excellent (n=0:100 %) to acceptable yields (n=1:51 %; n=2:27 %); the yield of HSi(OMe)3 is about 85 %. Thus, the methoxysilanes formed might possibly open the door for future routes to silicon‐based products.  相似文献   
34.
The novel complex cis‐[(ITMe)2Pd(SiMe3)2 (ITMe=1,3,4,5‐tetramethylimidazol‐2‐ylidene) has been synthesized by mild oxidative cleavage of Me3SiSiMe3 using [(ITMe)2Pd0]. The use of this complex as precatalyst for the cis‐bis(silyl)ation of alkynes using unactivated disilanes is reported.  相似文献   
35.
Reported herein is the rhodium‐catalyzed enantioselective C? H bond silylation of the cyclopentadiene rings in Fe and Ru metallocenes. Thus, in the presence of (S)‐TMS‐Segphos, the reactions took place under very mild conditions to afford metallocene‐fused siloles in good to excellent yields and with ee values of up to 97 %. During this study it was observed that the steric hindrance of chiral ligands had a profound influence on the reactivity and enantioselectivity of the reaction, and might hold the key to accomplishing conventionally challenging asymmetric C? H silylations.  相似文献   
36.
Graphene is scientifically and commercially important because of its unique molecular structure which is monoatomic in thickness, rigorously two-dimensional and highly conjugated. Consequently, graphene exhibits exceptional electrical, optical, thermal and mechanical properties. Herein, we critically discuss the surface modification of graphene, the specific advantages that graphene-based materials can provide over other materials in sensor research and their related chemical and electrochemical properties. Furthermore, we describe the latest developments in the use of these materials for sensing technology, including chemical sensors and biosensors and their applications in security, environmental safety and diseases detection and diagnosis.  相似文献   
37.
Experimental data and modeling of the dissolution of various Si/SiO2 thermal coatings in different volumes of hydrofluoric acid (HF) are reported. The rates of SiO2‐film dissolution, measured by means of various electrochemical techniques, and alteration in HF activity depend on the thickness of the film coating. Despite the small volumes (0.6–1.2 mL) of the HF solution, an effect of SiO2‐coating thickness on the dissolution rate was detected. To explain alterations detected in HF activity after SiO2 dissolution, spectroscopic analyses (NMR and FTIR) of the chemical composition of the solutions were conducted. This is associated with a modification in the chemical composition of the HF solution, which results in either the formation of an oxidized species in solution or the precipitation of dissolution products. HF2? accumulation in the HF solution, owing to SiO2 dissolution was identified as the source of the chemical alteration.  相似文献   
38.
Metal‐assisted chemical etching (MaCE) on silicon (Si)—mediated by polyvinylpyrrolidone (PVP)—is systematically investigated herein. It is found that the morphologies and crystallographic natures of the grown silver (Ag) dendrites can be significantly modulated, with the presence of PVP in the MaCE process leading to the formation of faceted Ag dendrites preferentially along the (111) crystallographic phase, rather than along the (200) phase. Further explorations of the PVP‐mediated effect on Si etching are also revealed. In contrast to the aligned Si nanowires formed by MaCE without PVP addition, only distributed nanopores with sizes of 200 to 400 nm appear on the Si surfaces in the presence of PVP. The origin of surface polishing on Si in the PVP‐mediated MaCE process can be attributed to the distinct transport pathway of holes supplied by the Ag+ ions, where the holes are injected directly into the primary Ag seeds, rather than through Ag dendrites, thus leading to the isotropic etching of the Si surface.  相似文献   
39.
We report a self‐propelled Janus silica micromotor as a motion‐based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self‐propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s?1. Biotin‐functionalized Janus micromotors can specifically capture and rapidly transport streptavidin‐modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self‐propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab‐on‐chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications.  相似文献   
40.
Self‐organization plays an imperative role in recent materials science. Highly tunable, periodic structures based on dynamic self‐organization at micrometer scales have proven difficult to design, but are desired for the further development of micropatterning. In the present study, we report a microgroove array that spontaneously forms on a p‐type silicon surface during its electrodissolution. Our detailed experimental results suggest that the instability can be classified as Turing instability. The characteristic scale of the Turing‐type pattern is small compared to self‐organized patterns caused by the Turing instabilities reported so far. The mechanism for the miniaturization of self‐organized patterns is strongly related to the semiconducting property of silicon electrodes as well as the dynamics of their surface chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号